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ABSTRACT

Efficient array storage is the backbone of scientific data processing.

With an explosion of data, rapidly answering queries on array data

is becoming increasingly important. Although most of the array

storages today support subsetting of an array based on dimensions

efficiently, they fall back to full scan while executing value-based

filter operations. This has lead to an interest in approximate query

processing, but such methods can have substantial inaccuracies.

This paper presents COMPASS, an array storage system with

integrated value index support. Our approach efficiently encodes

arrays as bin-based indices and corresponding residuals describing

elements in each bin. Our query processing method uses bin-based

indices, with residuals decompressed as needed, to ensure that ac-

curacy is not sacrificed. Our evaluation shows that compared with

current array storage systems such as SciDB, our method achieves

a smaller storage footprint, but most importantly, can perform fil-

ter operations an order ofmagnitude faster on low selectivity queries.

Meanwhile, COMPASSmaintains comparable performance on high-

selectivity queries or dimension-based subsetting operations.
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1 INTRODUCTION

Our understanding of the universe advances with our ability to

obtain and process data [28]. An unprecedented amount of data is

being generated in a variety of scientific and engineering domains,

from the images of the deep universe [25] to the tracings of particle

collisions [21], and from the sequences of human genes [43] to the

simulations of global climate changes [48]. Today, projects such as

the Large Synoptic Survey Telescope [25] generates terabytes of

data every day, pushing the data amount on our hand to exascale

and beyond.

Data in many of these domains are naturally represented as a

set of multi-dimensional arrays, making the efficient storage and
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navigation of array data a vital challenge. Hence, various array

storages [9, 22, 36, 37, 44] have been introduced. Most of these stor-

ages rely on a chunked structure, storing arrays in small I/O blocks

based on its dimensions, to allow efficient execution of operations

such as full scan and dimension-based selection (subsetting).

However, scientists and analysts demand more than dimension-

based selection. For example, a climate scientist may want to find

the grid-cells with higher temperatures. Similarly, one may want

to select all the high-energy particles before further analysis or

visualization. Such situations require value-based selection or fil-

tering. With the vast amount of data on hand, and the computa-

tional power out-growing the I/O capability of the systems today,

it is crucial that the filter operation should conserve I/O as much

as possible. In addition, because the same dataset is often being

analyzed by different teams, at different times, and for different

purposes, it is also important that the query range can be chosen

flexibly, without relying on our a priori knowledge about possible

queries.

Options for value-selections on arrays are limited, though.Many

existing array storages [9, 36, 44] only store data based on their

dimensions, and fall back to scan everything while executing fil-

tering operation. It is not uncommon for users to manually store

the filtered results for different query ranges with the goal of accel-

erating later analytics. This creates unnecessary data duplication,

and requires the query ranges to be known ahead of time. External

indices are another option – bin-based bitmap indices in particular,

are widely used [8, 16, 23, 52, 53]. However, retrieving the original

values based on its bitmap indices is prohibitively expensive; hence,

the bitmap index is often seen as a lossy compressed representation

of the data, and used for executing query approximately without

referring the original data [42, 50, 57]. As a result, the types of the

queries such indices can answer are limited. Also, these methods

often rely on the binning strategy and our assumption about the

distribution of the query range to achieve higher accuracies [50].

Moreover, because the exact data could not be recovered, it is not

possible to pipe the filtered data for further analyses.

Overall, there are advantages of using external indices as a rep-

resentation for scientific data, provided that the loss of accuracy

can be avoided, the original data can be recovered, and the I/O

overhead is acceptable. One way to achieve this is integrating the

index into the storage. This paper presents the design of COM-

PASS (COMPASS Array Storage System), an array storage with

support for compact and integrated value indices. In addition to

the traditional plain datasets, COMPASS also supports storing and

querying data in indexed datasets – specifically, the values are in-

dexed using a number of bins specified by the user, while also

storing necessary information to recover the original dataset. It
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enables methods for efficient filtering, while reporting accurate re-

sults regardless of the binning strategy being used. In addition, be-

cause original data can be recovered, the filtered result can be ag-

gregated, visualized, or used as the input for subsequent analysis

step(s). Furthermore, this representation almost always occupies

same or less storage size as the original dataset.

The basic idea of our approach is as follows. The data in an array

are reorganized according to the bins it belongs. Each bin tracks

the positions of the values in it with a compressed positional index.

A bin also keeps a residual data segment, so that the actual values

in a bin can be recovered. COMPASS utilizes the range of a bin as

extra information to compress the residual data, reducing the stor-

age redundancy. Moreover, it implements a chunk-based storage

scheme, ensuring its quick subsetting ability.

We experimentally evaluate our implementation using both syn-

thesized and real data. Our results indicate that, comparedwith the

original dataset, our method usually achieves a positive compres-

sion ratio; it can perform accurate filtering operations by an order

or more of magnitude faster when the selectivity is low, and still

outperforms the operations on plain dataset even when the selec-

tivity is relatively high. We observe a similar performance advan-

tage over the popular SciDB array database.

This paper makes the following contribution to the scientific

data management community:

• We introduce an efficient array storage technique, integrat-

ing value index with a number of user-specified bins into the

storage, facilitating fast and accurate filtering operations. In

the process, we proposemultiple options for efficient encod-

ing of the value index and its complementary data.

• We present COMPASS, an array storage system with sup-

port for datasets both with and without value indices. We

show an access method suitable for an indexed dataset, and

how to implement common array operations on top of it.

• Our extensive evaluation demonstrates data storing in an in-

dexed form can often save the storage footprint, frequently

outperformsperforming a full scan on ordinary datasets even

when selectivity is high, and can be effectively converted

back to its ordinary form if necessary.

The remainder of this paper is organized as follows. We lay out

necessary background concepts of COMPASS in Section 2. Section

3 discusses the storage organization of an indexed dataset. Section

4 follows by describing the design of the access methods in COM-

PASS and how queries are executed on top of it. We experimentally

evaluate the performance of COMPASS in Section 5, discuss related

work in Section 6 and conclude the paper in Section 7.

2 BACKGROUND

This section lays out necessary concepts related to COMPASS. This

includes the array data model, how bitmap indices and inverted

lists can be used to encode the positions of elements in a dataset,

and background information on the floating-point number format

and compression.

2.1 Array data model

The central concept of the array-oriented data model is datasets.

Each dataset is a multi-dimensional indexed array, reflecting a one-

to-onemap fromann-dimensional vector (dimensions) to one value.

We refer ton as the rank of the array, and then-dimensional vectors

as the coordinates. Some of the coordinates might have no corre-

sponding values. These positions are represented as empty values.

For I/O and subsetting efficiency, a dataset is often stored and

processed in the granularity of chunks. Most array storages today

employ the regular chunking strategy [39], which divides a dataset

into multiple equal-sized hyper-rectangular chunks according to

the coordinates of elements. The elements in a chunk are stored

contiguously, with optional compression being applied to save I/O.

2.2 Bitmap indices and inverted lists

Bothbitmap indices and inverted lists provide away to index records

in a column. Given N records, a bitmap index uses N bits to indi-

cate whether each of these records satisfies a certain condition. It

has been used to accelerate queries in relational databases [14, 15,

34, 53, 54] as well as on scientific datasets [8, 16, 23, 42, 46, 47, 50,

52, 57].

A bitmap is usually stored and processed in its compressed form

for efficiency. Popular methods includeWAH [55], EWAH [33] and

Roaring [31]. Most methods utilize the fact that there are often con-

tiguous chunks of 0s and 1s in a bitmap. Hence, instead of storing

these 0-fills and 1-fills as literal words, they can be stored as a spe-

cial RLE word. We call an uncompressed bitmap a bitvector.

Another method of indexing the records is storing the record

IDs that satisfy the index condition in an inverted list. However,

storing the IDs literally is not desirable due to its space overhead.

Instead, assuming the records IDs are increasing monolithic inte-

ger sequences, the delta of adjacent IDs (‘gap’) can be stored. In the

case that the delta can be negative, zig-zag encoding could be used

to transform signed integers to unsigned integers (0 → 0,−1 →

1, 1 → 2...). This converts the problem of storing inverted lists to

compressing small integers. One of the most simple, yet effective,

methods is variable bytes [60], which uses a number of bytes to en-

code a value, and a certain number of bits to indicate the number

of bytes being used. The state-of-the-art methods are block-based

ones, such as PFor [32, 60], PFor encodes the numbers in relatively

large blocks such as 64 or 128, and uses bx bits to encode each num-

ber in the block. If a number could not be encoded using bx bits, a

special marker is placed in the place, and the number is attached at

the back of the block. PFor can achieve a high decoding speed yet

preserve a high compression ratio with SIMD vectorization [32].

It is not practical to keep a bitmap or inverted list for every

unique floating number in the dataset. Thus, some sort of binning

is needed. The simplest binning method is equi-widthbinning,which

divides the dataset to bins containing the equal intervals of the

value domain. Anothermethod, equi-depthbinning divides the data-

set to bins with equal numbers of elements and generally are more

accurate in approximate aggregations, but aremuch slower to build.

Some more complex method [50] assumes a priori knowledge of

the query frequency, hence are often not suitable in the case which

query condition and range can change.
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Figure 1: COMPASS reorganizes a dataset into a number of bins. A

positional index tracks the positions of values in each bin. The resid-

ual data store the extra data necessary for recovering the original

dataset.

2.3 Floating-point number and compression

IEEE 754 [27] is the prevailing standard of floating-point repre-

sentation. It describes a finite floating number using three compo-

nents, a sign bit s , an exponent q, and a significand c . These three

parts are concatenated in a binary form s ‖q‖c , and represent the

numerical value (−1)s × c × 2q . We always choose the exponent q

to be the smallest exponent allowing the value to be represented

exactly to ensure a unique binary representation. Also, the leading

bit of the significand is always 1 and is represented implicitly.

The IEEE floating-point format has a nice property of maintain-

ing the lexical order. That is, if the binary representations of two

floating-point numbers fa and fb are viewed as sign-magnitude in-

tegers sa and sb , it does not change its partial order: fa < fb ⇔

sa < sb . This property shows the floating-point numbers within

a small range are likely to contain the same higher bits, which is

vital for our storage scheme described in Section 3.

General floating-point streams are hard to compress. Most suc-

cessful methods use a combination of differentiation and predic-

tors. FPC [10] uses two hash-based predictors, fcm and dfcm to

predict the next value based on the previous values and their deltas.

The prediction is then comparedwith the actual values, and a resid-

ual is computed. FPC then uses a modified variable bytes compres-

sion scheme to compress the residual values. In practice, general

compressors, such as the Lempel-Ziv compressor family [58], are

often used to compress the chunk content of a dataset.

3 DATA STORAGE

This section discusses the novel value-indexed storage format of

COMPASS.

3.1 Indexed representation of an array

COMPASS organizes array data using a bin-based index: values

are grouped into a number of bins and their positions are stored

in the positional index of each bin. Because multiple unique values

exist in each bin for scientific data, the positional index only pro-

vides an approximate picture of the dataset, and extra information

is needed to reconstruct the dataset losslessly. COMPASS stores

this information as the residual data of each bin.
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Figure 2: An example of the chunking strategy of COMPASS. The

example dataset here has 100× 100 elements, with 40 bins in total. A

chunk of it contains 10 bins in a rectangular region of 25 × 25.

Figure 1 illustrates how a dataset is stored in this representation:

the values are divided into five bins based on the range, each bin

stores the positions of the values in it, as well as the residual data

(here shown as the delta of the value and the lower bound of the

bin, we discuss the actual representation in §3.5). Using this rep-

resentation, a query only needs to retrieve the bins that contains

the elements of interest and then reconstructs the elements using

the positions and residuals, saving both I/O and processing time.

Empty elements are represented implicitly, not stored in any bins,

allowing an indexed dataset to handle sparse datasets efficiently.

Furthermore, as in prior work on array storage, COMPASS di-

vides an indexed dataset to small fragments called chunks, which

are the basic I/O and processing units of the dataset. Both the

chunking strategy and the representation of a chunk needs to be

adjusted to store an indexed dataset efficiently. We discuss these

two important problems later in this section.

3.2 Binning and chunking strategy

Given a value domain, there can be many binning methods. This

paper only considers range-based bins, that is, if a dataset has a

value-domain of [a0,am), we choosem − 1 points a1,a2, . . . ,am−1
in the domain, thus dividing the data into m bins. The ith bin bi
contains values in [ai−1,ai ) range.

For efficient subsetting operation, a dataset is still divided into n

hyper-rectangle segments of equal size according to its dimensions

using regular chunking (§2.1). Combined withm bins, this creates a

total ofnm slices. Consider there can be hundreds of bins, and some

bins might contain only a few elements, COMPASS groups these

slices together into chunks for better I/O efficiency. However, stor-

ing allm bins of a segment inside a chunk causes any value-based

selection to load all bins from disk, defying the point of indexing.

Hence, we can group a few bins together, so that each chunk con-

tains the data of k bins in a segment. Figure 2 demonstrates this

chunking strategy.

An indexed chunk can be uniquely identified by its boundary co-

ordinates and the bin(s) it contains. A tree-based chunk map stores

the address of each chunk. As the number of chunks is usually not

very large, COMPASS keeps this map in the main memory.
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3.3 Layout of an indexed chunk

An indexed chunk contains three segments: the residual data and

the positional index as described earlier, and the chunk header for

bookkeeping purposes. One question is the storage layout of the

positional indices and residential data inside a chunk. Our design

decision comes from the observation that positional indices are

not always necessary for query processing. For example, an ag-

gregation operator can select all the elements inside a chunk, and

thus does not need the positional indices to proceed. Therefore,

layout-wise, the positional indices and residual data of all bins in

the chunk are combined into two separate segments. This way,

when the positional index is not needed, only the residual data

segment is loaded, sparing the extra I/O for loading the positional

indices.

3.4 Positional index

For each element in a bin, the positional index marks its dimen-

sional positions within the segment. To achieve this, the multiple-

dimensional coordinates of the elements are first serialized to lin-

ear offsets. The offsets can then be stored in a compressed form, ei-

ther as a bitmap, or using a monolithic sequence inverted-list com-

pression scheme such as PForDelta [32, 60]. Both methods have

their merits. Bitmaps are generally more efficient in executing ap-

proximate queries based on set intersection [50]. However, decod-

ing the offsets from a bitmap requires tracking howmany bits have

already been visited, therefore brings extra CPU overhead. The

storage footprints of the two methods can be affected by the data-

set and binning strategy. We investigate it in Section 5.2.

3.5 Residual data

The residual data of a bin store additional data necessary to distin-

guish different values in the same bin. This can be seen as a com-

pression problem: how to losslessly compress the values in a bin

given its range [lb,ub). Simply applying general or scientific data

compression algorithms to a bin of values is often sub-optimal, as

the compressor is unaware of the bound of the values. Here, we

present a general framework of compressing range-limited data.

We compress the data in two steps: map and encode. The map

phase removes the redundant information from the input value

stream, mapping the data into a stream of integers with the same

bit-length, making it easier to compress. The encode phase takes

the input stream generated by the map phase and compresses it

into a more condensed representation.

Map There are several options for performing the map operation:

none. Do not do any transformation, the rationale here is the data

inside the same bin probably has some similarity, therefore, should

be already easy to compress.

prefix removal. Recall that if viewed as sign-magnitude integers,

IEEE floating-point numbers keep the lexical order of their binary

representations. Therefore, if the binary representations of lb and

ub have a common prefix, all the values inside the range have the

same prefix. The length of the common prefix is determined by the

numbers of floating numbers between the bounds. Removing this

prefix converts the float values to smaller integers.

Algorithm 1: Unsigned flip.

1 function unsigned_contiguous_map(lb ,ub ,value):

2 return uflip(value) − uflip(lb);

3 end

4 function uflip(value):

5 if value ≥ 0 then

6 return flip the sign bit of value ;

7 else

8 return ∼ value ;

9 end

10 end

Algorithm 2: The BFPC data compression.

1 function bfpc(data, lb , ub , table_size , lshift , rshift ,

dlshift , drshift ):

2 len← number of leading zero bits of lb and ub;

3 rshift ←min(rshift − len,0);

4 drshift ←min(drshift − len,0);

5 initialize bit vector selector ;

6 initialize integer array residual ;

7 initialize fcm predictor f predictor using table_size ,

lshift and rshift ;

8 initialize dfcm predictor dpredictor using table_size ,

dlshift and drshift ;

9 for i = 1 to data.size() do

10 f predict ← predict value from fpredictor ;

11 dpredict ← predict value from dpredictor ;

12 xor [0] ← f predict xor value[i];

13 xor [1] ← dpredict xor value[i];

14 residual[i] ←min(xor [0],xor [1]);

15 selector [i] ← xor [0] ≤ xor [1] ? 0 : 1;

16 Update the predictors using value[i];

17 end

18 compressed ← compress residual using PFor;

19 return selector ‖ compressed ;

20 end

unsigned flip. The problem of prefix removal is floating point num-

bers are represented in a sign-magnitude fashion. Therefore, al-

though the values ±0.000001 only have a small difference, their

binary representations have no common prefix bits. unsigned flip,

shown in Algorithm 1, solves this problem bymapping all the float-

ing point numbers to the contiguous range of unsigned integers

according to their value. This could be done by flipping the sign

bits of the positive numbers, and all bits of the negative numbers.

After the flip, the residual is computed by simply subtracting the

mapped lower bound from the flipped value.

Encode After the map phase, an encoder is used to compress the

mapped data into a more compact form. We present four different

methods here.

PFor uses the PFor algorithm to compress the mapped data. If the

mapped integers are always positive, PFor is invoked directly [32,
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60]. If the data is signed, zig-zag encoding (§2.2) is applied before

the compressor so that the residuals with smaller absolute values

are still stored with fewer bits.

PForDelta first computes the delta between mapped integers. It

then applies zig-zag encoding on the data, and use the PFor algo-

rithm to compress the results.

FPC uses the FPC floating number compression algorithm to com-

press the mapped data directly.

Bounded-Fpc (BFPC) is an improved version of the FPC algorithm.

It aims to overcome two shortcomings of FPC while using it to

compress bounded values. First, when generating the hash value,

FPC extracts a fixed number of most significant bits from the value

being compressed. Because a mapped integer likely contains zero

bits in higher bits, this results in less information of the value be-

ing utilized. Second, FPC uses a modified variant-bytes format to

compress the difference between the actual value and the predicted

value. This format might store unnecessary zero bits, as well as re-

quires 3 bits for encoding the length of the encoded number.

The BFPC encoder is illustrated in Algorithm 2. It uses the same

hash-based predictors as the FPC compressor. However, BFPC ad-

justs the right shift bits parameter of the two predictors according

to the common prefix bits of the upper and lower bound (line 2-

4), so that the extract bits do not always include some zero bits.

The generated residual is also compressed using the PFor algo-

rithm for a better compression ratio (line 18). A selector bit vec-

tor tracks which predictor is used (line 15) and is prepended to the

compressed residual.

All the mapping methods can be vectorized using SIMD instruc-

tions without conditional jumps, and the PFor-based compression

algorithms are well-optimized for SIMD execution. We omit the

details here.

Combining the differentmap and encodemethods yields a range

of possible residual compressors, but not all the combinationsmake

sense. For example, the none mapping method can only work with

an encoder which can efficiently compress patterned floating data.

Therefore, we only consider the following combinations: prefix re-

moval / PFor (prefix-pfor), unsigned flip / PFor (uf-pfor), unsigned

filp / PForDelta (uf-pfordelta),None/FPC (fpc), prefix removal /BFPC

(prefix-pfor) and unsigned flip / BFPC (uf-pfor). We evaluate the

compression ratio of these compressors is evaluated in §5.2 as well.

4 QUERY PROCESSING

This section discusses how arrays in COMPASS can be queried.

4.1 System architecture

A dataset in COMPASS can be either a plain dataset (without an in-

dex), or an indexed dataset. Both kinds of datasets provide a chunk-

based access method API for client programs (see §4.2). COMPASS

also provides a set of composable pull-based operators for the users

to access or process these datasets easily, implemented using the

same chunk-based API.

Figure 3 gives an overview of the query processing using COM-

PASS. First, the scan() operator reads a COMPASS dataset, either

plain or indexed, from the storage. COMPASS also has the ability

to read data in external formats, such as NetCDF, directly as a plain
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Figure 3: Overview of query processing in COMPASS. Indexed or

plain datasets are read from storage via scan()( 1 ) or ArrayBridge

( 2 ). Further selection based on dimension or value condition ( 3 )

can be performed on the dataset before it is further processed. The

indexed and plain datasets can be converted to each other ( 4 ).

IndexedChunkIterator open(Chunk<T>* chunk);

bool next_bin();

bool next_tile();

size_t tile_size();

size_t* offsets();

T* values();

Table 1: The interface of an indexed chunk iterator.

dataset via ArrayBridge [56]. Value-based or dimension-based se-

lection can then be performed on the scanned dataset, before be-

ing further processed by a parent operator (like aggregation) or

a client program. Indexed and plain datasets can be converted to

each other using the to-plain()/to-indexed() operator, in case

the parent operator does not support the other type of dataset.

4.2 Access method

This subsection describes the chunk-based access method provided

by COMPASS. A client browses through the chunks of a dataset

using a DatasetIterator, and reads the data inside a chunk using

a ChunkIterator.

A DatasetIterator provides four major APIs for browsing the

chunks in a dataset: open(), next(), seek() and read_chunk(),

as well as additional methods to query the shape or type of chunk,

or the bins it contains. Most of the methods have their usual se-

mantics. However, as mentioned in the previous section, if only

the values are needed, not retrieving the positions of the elements

could save I/O and processing time. Therefore, the read_chunk()

method accepts an additional parameter, to indicate whether the

caller needs the positions.

After a chunk is retrieved, the user uses a chunk iterator to nav-

igate through its content. How to process a plain chunk is well

explored in prior works, so here we focus on the interface and im-

plementation of an indexed chunk iterator.
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An IndexedChunkIterator, as shown in Table 1, supports nav-

igating through the bins of an indexed chunk via the next_bin()

and next_tile() methods. Repeatedly calling next_bin() jumps

to the next bin in the chunk. For each bin, the values and positions

of the elements are returned in smaller fixed-sized blocks referred

as tiles, in the same order as a plain dataset. Compared with decom-

pressing the entire bin at once, this avoids accessing unnecessary

tiles, as well as improves cache locality, hence improves the scan-

ning performance. Calling next_tile() jumps to the next tile and

decompresses it. The values of the elements in the tile can then be

accessed via values()method. offsets() returns the position in-

formation if it is loaded. An IndexedChunkIterator only returns

non-empty elements, the empty values are naturally ignored due

to the storage representation.

4.3 Operator implementation

This subsection demonstrates how the access method described in

the previous subsection can be used to implement common oper-

ations in array processing. We take value-based selection (filter),

dimension-based selection (subset), and aggregation as examples.

The filter() operator selects the values within a certain range

[lb, rb] in the dataset. It first identifies the set of bins that intersects

with the queried range, and iterates through all the chunks that

contains these bins. For the bins inside the query range entirely,

it decompresses and returns the entire bin. Otherwise, it checks

the elements and returns the ones inside the query range. The fil-

ter operator only loads the positional index if the parent operator

requires it to save I/O.

The subset() operator returns a hyper-rectangle dimensional

area of the array. It first locates and iterates through all the chunks

containing the interested area. If the chunk is all covered by the

queried area, it returns the chunk directly. Otherwise, it looks through

the offsets, and only returns the elements that are inside the query

area. As converting the offsets to the coordinates and then check

for the query condition is computationally expensive, the subset

operator computes the ranges of the offsets being queried using the

query condition, and checks if the decompressed ranges matches

the computed offset range. A subset operator always loads the po-

sition information while reading chunks from its children.

Finally, the aggregate() operator returns the aggregates val-

ues of all the elements in the input array. The implementation is

straightforward. It simply iterates through all the non-empty ele-

ments and perform the required aggregation.

4.4 Converting indexed and plain chunks

When performing position-dependent operations on an indexed

dataset, such as matrix multiplication or convolution, it might be

desirable to convert the dataset to a plain chunk. Similarly, plain

chunks need to be converted to indexed chunks in data loading.

COMPASS provides the to-plain() and to-indexed() operators

for this need.

The to-plain() operator accepts an input dataset as its input

and converts it to a plain dataset with the same segment shape. A

naive implementation can allocate a plain chunk, iterate through

all the overlapped indexed chunks one-by-one, and decompress the

values to their correct positions. However, this harms the locality,

and adds significant pressure on the memory allocation and pag-

ing system. Instead, our implementation constructs and returns the

plain chunk in the unit of tiles, each containing a fixed number of

contiguous elements in the chunk. Internally, to-plain() oper-

ates similar to a merge join: it reads the next tiles of all overlapped

bins, and performs a merge operation as the next tile is requested

by the parent operator. To handle empty elements, it uses a bitvec-

tor to track which elements do not exists in all bins, and returns

the bitvector together with the data. Our benchmark shows the

tile-based implementation of to-plain() improves the native im-

plementation by ∼ 100% in terms of CPU time.

The to-index() operator is the inverse operation of to-plain().

In addition to the input dataset, it also needs the number of bins,

the ranges of each bin, as well as the number of bins in each chunk

as parameters. For every plain chunk, the operator uses binary

search to place its values to the correct bin, and combines the bins

to assemble indexed chunks.

5 EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the COMPASS array

storage. We are interested in the following questions:

• How does an indexed dataset compare with a plain dataset

in terms of their storage footprints? (§5.2)

• How does the performance of value-based selection (filter-

ing) and dimension-based selection (subsetting) on indexed

datasets compare with the performance on plain datasets

and a state-of-the-art array database, SciDB? (§5.3 and §5.4)

• Comparing with querying the data approximately on a stan-

dalone bitmap index, what kind of trade-offs are we making

in terms of accuracy and query time? (§5.5)

• Can the filtered result of an indexed dataset be converted to

a plain representation effectively if necessary? (§5.6)

• Whatwould be suitable chunking parameters for an indexed

dataset? (§5.7)

5.1 Setup

Configuration. We evaluate our implementation on a platform

with 2 14-cores E5-2680 v4 processors and 512 GB of memory, run-

ning CentOS 7. The data is stored in a local 2 TB 7200rpm WD

hard disk with an xfs filesystem. The COMPASS storage engine is

implemented in C++. COMPASS does not implement cache man-

agement itself and relies on the cache at the OS and storage level.

We clear the cache before all experiments were execution times are

measured.

We experimentally compare the performance of the same queries

on an indexed array with those on the plain datasets. To the best of

our knowledge, there is no array storage engine with value indices

available. To better illustrate the performance of COMPASS, we

also compare it against the popular SciDB array database, version

15.12, whose storage engine has been shown to have a similar I/O

performance compared with popular scientific file formats such as

HDF5 [56].

Datasets. Both synthetic and real-world datasets are used to eval-

uate the query performance of COMPASS. The synthesized dataset

we used, uniform, is a two-dimensional 32-GiB dataset of double
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numberswith a uniform distribution on its value domain of [1, 101).

The two real-world datasets are taken from the NASA Earth Ex-

change (NEX) Downscaled Climate Projections (NEX-DCP30) [48].

NEX-DCP30 contains the retrospective and perspective climate pro-

jection of the conterminous United States with multiple models

from year 1950 to 2099. The first dataset, tasmin, contains the pro-

jected monthly average daily minimum surface temperature from

2066 to 2099 using an RCP model. The dataset can be seen as a

3105×7025×408 single-precision float array,with an uncompressed

size of ∼ 34GiB. The second dataset, precipitation, containing the

projected precipitation from 1950 to 2005, is a 3105 × 7025 × 672

single-precision float array with an uncompressed size of ∼ 55GiB.

We set the chunk size so that each segment contains approximately

64 MB of data. Unless otherwise specified, we use 100 equi-width

bins for indexed datasets and standalone bitmap indices, and store

4 bins in an indexed chunk. Our choice of chunking parameters is

based on our experiments reported at the end of this section (§5.7).

Table 2: Queries used in our experiments.

Name Query

filter-sum
SELECT SUM(value) FROM dataset

WHERE value ∈ [lb, ub];

filter-

subset-sum

SELECT SUM(value) FROM dataset WHERE value ∈ [lb, ub]

AND dimensioni ∈ [ldimi , udimi ], ∀i ∈ 1. .rank ;

filter-

subset-min

SELECT MIN(value) FROM dataset WHERE value ∈ [lb, ub]

AND dimensioni ∈ [ldimi , udimi ], ∀i ∈ 1. .rank ;

filter-

subset-scan

SELECT value FROM dataset WHERE value ∈ [lb, ub]

AND dimensioni ∈ [ldimi , udimi ], ∀i ∈ 1. .rank ;

�eries. Wechoose aggregation with range selection conditions

as the representative query, as it is one of themost common queries

in analytics and its performance is representative for various queries

performing an indexed scan. To test the performance of both value-

based selection (filter) and dimension-based selection (subset), we

use multiple selection conditions. Table 2 summarizes the queries

used in our experiments. For value-based queries, the query per-

formance can be related to both how large the queried domain is

as a fraction of the value domain (domain range), and how many

elements are being queried (data amount). We report both of the

above as percentages of the original dataset.

5.2 Storage footprint

A small storage footprint reduces the I/O time and often results

in less overall query response time if I/O is the bottleneck. Here

we investigate the storage footprint of the 6 residual bits compres-

sion methods proposed in §3.5. We also evaluate whether using the

EWAH [33] bitmap compression or the PForDelta [60] inverted list

compression is more efficient for storing the positional index. 1

We test these methods on the various datasets published by

Burtscher et al. [10], as well as samples taken from the two real

datasets we used, tasmin and precipitation. Table 3 reports the size

of compressed residual data and positional index in percentages of

1 For the FPC and BFPC methods, we pick a 32K hash table size, and set the left/right
shift lengths for the fcm and dfcm coders to 4/16 and 2/12 bits respectively.
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Figure 4: Filtering the uniform dataset (∼32 GiB).

the original dataset. The methods with the best compression ratio

is marked as bold.

In terms of residual compression, there is no clear winner, with

uf-bfpc and uf-pfordelta being the two methods with the best com-

pression ratios. The good performance of these methods indicates

the importance for a residual compression method to effectively

encode difference in the residuals. Overall, uf-bfpc seems to be the

best choice; even when the uf-bpfc does not achieve the best com-

pression ratio, the difference is usually within one or two percent

of the original data size.

Because uf-bfpc capturesmore information and encodes the resid-

ual more efficiently, it also improves the compression ratio of none-

fpc by an average of 1.5x, sometimes as much as 5.4x. Which map-

ping method is more effective depends on the encodemethod used:

unsigned flip works better with the BFPC method, whereas prefix

removal performs better with the PFor encoder on certain datasets.

As for the index compression, the inverted list performs signif-

icantly better than the bitmap in general, except in the datasets

with highly concentrated values (msg-bt, msg-lu and msg-sppm).

This is because bitmap indices is generally optimized for fast inter-

section and union operations rather than optimized storage size.

Because matching a stored offset with its residual value while us-

ing bitmap as index also needs extra tracking, an inverted list is

generally more suitable for storing the positional index.

Based on these observations, we compress the residual data us-

ing uf-bfpc, and the positional index using PForDelta in subsequent

experiments. The last column in Table 3 shows the combined stor-

age footprint of storing the indexed dataset. Even with the addi-

tional index, we still achieve better storage footprint compared

with the original dataset, illustrating the effectiveness of the in-

dexed storage scheme of COMPASS.

5.3 Filtering

Because scientific datasets are usually not frequently updated, the

index creation time is an one-time cost and not our major concern.

Hence, we turn our attention to the index scanning performance

of COMPASS. This subsection compares the performance of the
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Table 3: The storage footprint (% of the uncompressed dataset) of different residual and position compressing algorithms.

Residual Compression Position Compression

Dataset none-

fpc

prefix-

pfor

uf-pfor uf-

pfordelta

prefix-

bfpc

uf-bfpc EWAH PFor-

Delta

uf-bfpc +

PForDelta

msg-bt 80.1 94.4 97.3 84.5 80.9 81.0 0.0 0.1 81.1

msg-lu 86.8 100.0 97.1 88.2 84.5 84.2 0.0 0.1 84.3

msg-sp 80.2 97.6 93.3 90.4 78.9 78.9 0.4 0.3 79.1

msg-sppm 20.0 76.5 85.1 31.4 15.7 15.6 0.0 0.1 15.7

msg-sweep3d 47.9 86.4 86.0 76.1 39.7 39.4 2.7 1.2 40.5

num-brain 86.4 82.3 79.9 79.0 81.3 80.2 16.2 5.5 85.7

num-comet 85.8 83.3 91.5 78.8 81.1 80.9 15.1 4.8 85.7

num-control 95.8 98.6 94.2 90.0 91.9 91.7 1.5 0.9 92.6

num-plasma 10.7 79.6 77.7 76.4 2.0 2.0 22.5 6.1 8.1

obs-error 50.5 80.2 77.4 55.8 38.4 37.7 23.7 8.7 46.4

obs-info 56.6 80.4 77.7 75.5 38.9 37.9 13.3 5.0 42.8

obs-spitzer 99.0 95.8 97.5 94.4 96.6 95.0 0.9 0.5 95.5

obs-temp 93.0 89.2 83.1 84.5 86.1 84.8 15.6 8.0 92.8

precipitation N/A* 44.8 42.8 40.5 42.8 42.1 3.6 2.6 44.7

tasmin N/A* 28.3 26.1 27.0 28.6 27.8 9.4 4.7 32.6

* The FPC method does not support single-precision data.

filter-sum query on indexed datasets against performing the same

operation on plain datasets, and evaluating the query using SciDB.

Figure 4 shows the performance of the filter-sum query on the

uniform dataset when the selectivity is varied form 0.1% to 100%.

As expected, the query response time of filtering an indexed data-

set is proportional to the selectivity, except for when the selectivity

is lower than 4%. This is because the storage engine loads the entire

chunk even if only one bin in it is accessed. This indicates that the

disk I/O of loading the data, rather than the decompressing cost, is

the actual bottleneck.

The indexed scan also shows a significant advantage over full

scan on a plain dataset, whose response time does not change with

selectivity. When selecting 10% of elements, the filter operation on

the indexed dataset is ∼ 8.7 times faster than on the plain dataset.

Each bin in the uniform datasets contains a similar number of

the elements. To illustrate the effect of data distribution, we per-

form the same query on the tasmin real dataset, which has a distri-

bution similar to the normal distribution, with values concentrat-

ing in themid-range. Figure 5 and 6 shows the query response time

while the query range chosen are relatively dense and sparse, re-

spectively. As shown in the figures, the response time is almost pro-

portional to the data amount being read. Comparison-wise, filter-

ing the indexed dataset outperforms filtering the plain dataset by

at least 3x, the advantage of indexed increases even further when

fewer elements are selected, with the acceleration ratio reaching

as high as 80x. When filtering the precipitation dataset (Figure 7),

whose most data concentrates in just a few bins, the indexed scan

shows similar significant speed up.

Even when all the elements are selected, filtering the indexed

array is still faster on all synthetic and real datasets. This is be-

cause our storage scheme compresses the datasets efficiently while
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Figure 5: Filtering the tasmin dataset (∼34 GiB). The query selects a

relatively dense domain range.

adding limited decompression overhead: the indexed tasmin data-

set is almost 70% smaller compared with the plain dataset, but it

only takes about 25% extra CPU time to decompress and aggregate

the indexed dataset. Our profile shows about half of the CPU time

goes to decompressing the residual bins, especially on updating

the prediction table of BFPC and calculate the actual values using

the table because it could not be vectorized efficiently, indicating

further improving decoding efficiency is the key to obtain better

in-memory performance.

Finally, both the indexed dataset and the plain datasets of COM-

PASS outperformSciDB in all scenarios. This is because the filter()

operator of SciDB is implemented in a general way, without special
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Figure 6: Filtering the tasmin dataset (∼34 GiB). The query selects a

relatively sparse domain range.
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Figure 7: Filtering the precipitation dataset (∼55 GiB).

optimization for the range filter query used here. Hence, it brings

a significant CPU overhead.

5.4 Subsetting

The next question is whether the subset operation can still be per-

formed on an indexed dataset as efficiently as on a plain dataset.

We evaluate this by performing the filter-subset-sum query on the

dataset. We select a region occupying 1/8 volume of the tasmin

dataset, and vary the selectivity from 0.1% to 100%.

As the result in Figure 8 shows, with the additional subsetting,

querying indexed datasets still retains its performance advantage

over both plain datasets and SciDB arrays. This is because an in-

dexed dataset still uses regular chunking to accelerate dimension-

based selection, and the sub-chunk selection in the boundary chunks

can be performed relatively fast as well.

Different aggregation operators can have different performance

pattern. For evaluation, we tested the performance of the filter-

subset-min query with the same parameters. The result is shown in

Figure 9. Performing the query on the indexed dataset is∼ 20 times

0.1 1.0 10.0 25.0 50.0 75.0 100.0
(0.2) (2.1) (20.8) (49.4) (83.4) (100) (100)

0.05

0.1

0.2

0.5

1

2

5

10

20

% of value domain selected

(% of elements selected)

Q
u

e
ry

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
in

u
te

s
)

Indexed Plain SciDB

Figure 8: Filtering a subset of the tasmin dataset (∼34 GiB) and ag-

gregate the result.
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Figure 9: Filtering a subset of the tasmin dataset (∼34 GiB) and find

its minimum value.

or more faster than performing it on the plain dataset, as the min-

imum operator only needs to read the bins and chunks that might

contain smaller values than the current minimum value. The per-

formance of the indexed method improves when the query range

becoming larger. This is because the tasmin data distributes similar

to the normal distribution, so when the query range increases, the

minimal bin and chunk contain less data.

5.5 Comparison with approximate aggregation
method

Approximate methods improve performance by sacrificing certain

level of accuracy. A promising approximate method for aggrega-

tions involves using bitmaps as a standalone representation [50].

The bitmap compression algorithm used is EWAH [33], a widely-

used variant of the famous WAH [55] algorithm with a focus on

decompression speed. We investigate the accuracy and response

time of the query filter-subset-sum and filter-subset-min under dif-

ferent settings in Figure 10. We use the tasmin dataset, and still set

the subset area to 12.5%.
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Figure 10: Comparing indexed dataset with bitmap approximate aggregation, using the filter-subset-sum and filter-subset-min queries.

Figure 10a shows the relative error of performing filter-subset-

sum and filter-subset-min approximately using bitmaps. The width

of the query range is set to 1.5% and 15% of the domain range,

while its lower bound is moved through the entire domain range.

Although the min aggregation can be performed quite accurately

on an equal-width binned bitmap, executing the sum query approx-

imately on a 1.5% domain range almost always results in a relative

error of more than 50%. The approximate method still results in

an average relative error of 8.6% even if the selectivity increases

to 15%. Although certain binning methods might improve the ac-

curacy, these methods usually result in a significant increase of

the index construction time, and might require a priori knowledge

regarding the distribution of the query range. On the contrary, fil-

tering an indexed dataset returns the accurate results regardless of

the binning strategy, showing the robustness of our index method.

Another way to increase the accuracy of bitmap-based meth-

ods is increasing the number of bins. As shown in Figure 10b, the

accuracy at both selection levels significantly improves. However,

the size of the bitmap also increases. At 400 bins, the compressed

bitmap occupies∼ 60% space of the indexed dataset. This decreases

the speedup of the approximate method, shown in Figure 10c.

On the contrary, adding more bins to an indexed dataset does

not change the storage footprint by much since more fine-grained

binning also improves the residual compression ratio. The query

response time of the indexed dataset while the number of bins

increases are determined by two factors: adding bins reduces the

amount of unnecessary data processed, but also increases the over-

head of processing the extra bins. In this case, at the low selectivity

level, fine-grained binning greatly reduces the unnecessary data

processed and improves performance. However, at the 15% selec-

tivity level, the saved I/O was shadowed by the overhead of added

bins while usingmore than 100 bins, increasing the query response

time.

Comparison-wise, the performance of using an 100-bins indexed

dataset is comparable with using a 400-bins bitmap index in this

case, and always returns accurate results, making it an attractive

alternative for the approximate query method.

5.6 Converting indexed chunk to plain chunk

Sometimes it can be necessary to convert an indexed dataset to its

plain form via the to_plain() operator, so that some operations
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Figure 11: Comparison of the response time for the filter-subset-

scanquery on a 12.5% subset area of the tasmin dataset on a plain

dataset, and on an indexed dataset, but use to_plain() operator to

convert the result to a plain form.

can be performed more efficiently. This subsection evaluates the

performance of the to_plain() operator. Figure 11 compares the

response time of performing the filter-subset-scan operation on a

plain dataset, and on an indexed dataset, but using the to_plain()

operator to convert it to a position-based representation.

Converting the indexed dataset to a plain dataset takes extra

computation time because of the overhead in reorganizing array

cells, so it is preferable to access an indexed dataset using the bin-

based access method we mentioned in §4.2. However, the addi-

tional cost is limited because our tile-based algorithm avoid expen-

sive memory operation that harms cache locality. This overhead is

offset by the reduction in disk I/O amount. Overall, the indexed

scan accelerates the query at 10% selectivity by 3.9x. Its perfor-

mance scales well with the number of elements selected, and is

on par with performing the query on a plain dataset directly.

5.7 Chunking parameters

Finally, we investigate the choices of chunking parameters with a

given binning strategy.We pick filter-subset-sum as a typical query

with both value and dimension selections, selecting 1% or 50% of
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Figure 12: Response time of a filter operation on a 25% subset area of

the uniform dataset, with different chunk size and number of bins

per chunk.

the domain range, and 12.5% of the dimensional space. We use 100

equi-width bins and a segment size of either ∼ 16 MiB or ∼ 64 MiB,

and varys the number of bins per chunk from 1 to 32.

Figure 12 shows the query response time. As we can see, the

best chunking strategy depends on the segment size and selectiv-

ity. In general, storing too many bins in a chunk increases the un-

necessary I/O and harms the performance. However, the response

time does not benefit much from too fine-grained chunk sizes ei-

ther, because the overhead of meta-data processing and seek time

overhead shadows the reduced data I/O. In our setting, it seems

that this query performs reasonably well when the chunk size is

set in an order of megabytes. Based on these observations, we set

the segment size to be 64 MiBs, and using 4 bins per chunk in our

other experiments.

6 RELATED WORK

Array storage. HDF5 [22] and NetCDF [37] are two dominant

array file formats. Both formats focus on portability and usability,

and do not provide any support for value-based subsetting. There

has been a series of effort to design more feature-rich array stor-

ages [39]. Radasman [51] implements array storage as an extension

of relational databases. ArrayStore [44] propose a two-layer chunk-

ing strategy to balance the CPU and I/O requirements of an array

storage. SciDB [9] implements a share-nothing storage engine with

features such as replication, and versioning support. TileDB [36]

uses a fixed-size tiling strategy and decomposes a dataset to mul-

tiple overlapped fragments, allowing efficient writing and updates

on sparse arrays. Our work utilizes the regular chunking strategy

widely used by these systems and considers how value-based index

can be implemented in such systems with limited extra cost.

Many array storages compress the chunks before they are writ-

ten to the disk to reduce data size. A lot of these systems use general-

purpose lossless compressors [18, 41, 58]. One challenge is writing

compressed scientific files in parallel [4–6]. General floating-point

number compressors are hard to design. FPC [10] uses a combina-

tion of two predictors to generate residual and uses variant bytes

to compress the residual. The ISOBAR preconditioner [40] identi-

fies the compressible bytes of a floating-point number stream and

compress them only to improve the overall compression ratio.

ALACRITY and DIRAQ [26, 30] store in-situ simulation data

with precision-based index and fused encoding. In these systems,

the data is reorganized into bins based on its k higher-order bytes,

and an inverted index tracks the positions of the values in each

bin. The lower bytes of the values in each bin are then compressed

using ISOBAR and stored separately. However, the number of bins

and their ranges in these systems are determined by the amount

of unique high-order bytes in the input, limiting the acceleration

due to the index, and reducing the flexibly of its index. These sys-

tems also do not consider how to incorporate such fused encoding

into a multi-dimensional array storage, while preserving the abil-

ity of performing efficient subsetting operations. Our work, COM-

PASS shows how the idea of fused data and index encoding can

be used in an array processing system with arbitrary binning sup-

port, presents an efficient bit-based residual compression scheme,

and the design of a flexible storage engine capable of processing

various queries on both plain and indexed dataset.

Bitmap index and approximate query processing. Efficient com-

pression of a bitmap index reduces the storage footprint as well as

query time. Popular methods such as BBC [2], WAH [55] and its

variants [17, 20, 24, 29, 33] utilizes Run-Length Encoding (RLE) to

encode continuous 0-fill or 1-fill efficiently. Roaring bitmap [13, 31]

partitions a long bitmap into smaller chunks and stores each chunk

either as a bitvector or as a sorted integer array of element indices,

based on the density of set bits in the chunk. UCS [12] and Upbit [3]

uses muiltple bitmap vectors to allow updates on bitmap indices.

Bitmap indices and its variants have been shown to be efficient

in OLAP-style relational workloads, especially when the cardinal-

ity of the column is low [14, 15, 34, 53, 54]. FastBit [16, 52], HDF5-

FastQuery [23], and SDS/Q [8] support accelerating scientific queries

on existing file formats using external bitmap indices. Bitmaps can

also be used to answer approximate queries on scientific dataset

without referring to the original data[42, 46, 50, 57]. The accu-

racy of such queries often relies on our a priori knowledge about

the data and query distribution, and the binning strategy used. By

merging the data and indices, COMPASS reduces the storage re-

dunancy of an external bitmap indices, improves I/O efficiency, and

provides accurate results regardless of the queries and the binning

strategy.

Inverted lists and data compression. Inverted lists are a widely

used data structure in information retrieval systems, and are usu-

ally stored in a compression form. The compression methods can

be roughly divided to three categories: bit-level compression such

as Rice coding[38], Gamma coding [11] and elias-fano coding [35];

byte-oriented compression such as variable bytes and its variants [19,

45]; and word-oriented encoders such as the Simple [1] family and

various PFor-based compressors [32, 60].

Although inverted lists and bitmap index serve a similar pur-

pose, the latter is widely used in the information retrieval commu-

nity, while the former are widely used by the database discipline.

Until recently, not a lot of the discussion has been made on the

similarity of these two data structures. Bjørklund et al. discuss the

suitability of these two structures in decision support systems [7].



SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Haoyuan Xing and Gagan Agrawal

Zou et al. [59] propose to use bitmap indices to accelerate intersec-

tion operation of two posting lists. Recently, Wang et al. provide a

very detailed comparison between the two structures [49].

7 CONCLUSION AND FUTURE WORK

We have presented COMPASS, an array storage system with inte-

grated value index support. COMPASS reorganizes the elements

into a number of user-defined bins, and efficiently encodes the

bin-based indices and their corresponding values, generating an

indexed array representation that adds little storage overhead.

This paper also presented a chunk-based access method suitable

for processing indexed array data, and the corresponding query

processing strategies. An indexed array storage performs accurate

filtering operations irrespective of the binning strategy chosen by

a user, and preserves the efficiency of the subsetting operations in

traditional array storages. The filtering operation on an indexed

dataset scales with the number of elements selected, and outper-

forms the plain representation consistently, even when the selec-

tivity level is relatively high. The filtered result of an indexed data-

set can also be converted back to its plain representation efficiently

if necessary.

Interesting future research questions include how to implement

more complex operators on top of the indexed access method, how

an indexed dataset can be dynamically updated, and how the bin-

ning strategies and parameters can be automatically selected.
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